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ABSTRACT Efficient identification of the voltage sag sources is significant in the power quality studies.
This paper presents a novel method for voltage sag source identification which performs automatic feature
extraction and shows a superior performance regardless of the insufficient amount of training samples. In the
proposed strategy, the input data are preprocessed and fetched into the feature extractor, which is designed
based on the convolutional neural network. Then the weighted k-nearest neighbor classifier generates the
identification results. In the training period, the few-shot learning technique is harnessed, and the siamese
network is constructed such that the proposed model learns efficiently even with a small number of samples.
The proposed scheme is implemented in Python and PyTorch framework. Case studies and comparisons with
other methods are carried out on 700 samples of voltage sag events in Jiangsu Province, China. Experimental
results show the superiority of the proposed method over other identification methods in the tested cases.

INDEX TERMS Voltage sag identification, few-shot learning, siamese network, convolutional neural
network, weighted k-nearest neighbors.

I. INTRODUCTION
In the last decades, voltage sag (VS) has been regarded
as one of the most significant issues in power quality [1].
In spite of their short duration, such events can cause serious
problems in transmission and distribution system, micro-
grids, industrial or customer facilities [2], [3]. Various sources
such as faults, induction motors starting, and energization of
transformers may cause the VS events that are propagated
throughout the power system [4]. Therefore, monitoring and
analyzing the VS events help to mitigate the substantial loss
on the industrial utilities, improve the power quality indices,
and also clarify the responsible agent for the VS events.
Identifying the causes of the VS phenomena is an important
strategy to analyze and characterize such events. Nowadays,
suchwork is carried out mostly by themanual investigation of
the specialists [5]. It is thus significant to formulate a VS-type
identification method that can automatically handle a large
scale of recorded events.
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The developed VS identification methods can be catego-
rized into three main families: 1) expert systems based on the
human expert knowledge or rules; 2) methods based on unsu-
pervised learning and clustering techniques, and 3) methods
utilizing supervised learning and deep learning techniques.

Empirical rules are usually established to make decisions
in the first group ofmethods. An expert system that makes use
of the VS waveform information for VS data segmentation is
explored in [6]. An approach based on the wavelet entropy
and a dedicated expert system is suggested in [7]. These
methods show great simplicity and are usually convenient
to implement. However, their performance can be greatly
deteriorated if the model parameters such as the threshold
values are selected improperly.

The second group of methods does not require the labeling
of the input data. Instead, these methods formulate the
clusters of the VS samples based on the predefined map-
ping or feature extracting schemes. A method identifying the
VS events by exploring the polarization ellipse representa-
tions of these events is presented in [8]. The technique pre-
sented in [9] and [10] characterize the voltage-space vectors
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FIGURE 1. Structure of the proposed model after training period.

and the RMS-voltage transition and make use of the K-means
clustering algorithm to distinguish different VS groups. The
methods in this group obviate the labor work of labeling input
data. However, these methods only split the VS data into
several groups. The further recognition of the VS sources still
needs to be carried out manually or by other identification
schemes. Besides, the clustering performance can also be
strongly affected by different selections of the predefined
VS features.

The emerging machine learning and deep learning con-
cepts are also employed to identify the VS types. As sug-
gested in [11], a binary decision tree based on several
support vector machines (SVMs) is utilized to classify the
VS data. Reference [5] formulates the VS identification by
implementing a long short-term memory (LSTM) network to
avoid the extra step of extracting the VS features. In [12],
K-means-singular value decomposition is adopted for feature
extraction, followed by the least-square SVM to obtain the
predicted VS type. Authors of [13] train an auto-encoder net-
work with unlabeled VS data and develop a back-propagation
(BP) network with labeled data for VS event categorization.

From the previous literature reviews, the performance of
some methods is greatly affected by the threshold values,
the feature selections, and sometimes the accuracy of the
inception point of the VS events. Therefore, it is significant
to develop a VS identification method that can automati-
cally extract features from the VS data. On the other hand,
the methods of the last group generally require the specialists
to manually recognize and label a sufficient number of mon-
itored data of VS events for training purpose. The manual
labeling of these data usually consumes lots of time and
yields large cost on human resources. These methods will
suffer performance degradation when the number of correctly
labeled data are limited. The amount of VS training data
may be augmented with synthetic data such as the simulated
VS events. However, the recorded VS data and the simu-
lated ones generally come from different distributions. The
mismatching in the data distribution may produce further
deterioration in the identification performance [5], [11], [14].
Consequently, an identification method that can correctly
identify a large scale of unlabeled VS samples even with
an insufficient number of labeled training data is strongly
required.

To attain the aforementioned functionalities, this paper
introduces a novel VS identification method. The adop-
tion of the convolutional neural network (CNN) obviates
manually predefining the VS features or determining the
inception point-on-wave. The siamese network and the few-
shot learning technique are utilized such that the proposed
method learns efficiently even from a small number of

VS training data. Finally, the distance-weighted k-nearest
neighbors (WKNN) classifier is adopted to generate the iden-
tification results. Besides, the training data, as well as the
testing data, are assumed in the same distribution.

This paper is organized as follows. Section II illustrates
the proposed methodology of VS identification. Section III
shows the case studies, comparison, and discussions on sev-
eral different identification methods. The conclusion is pre-
sented in Section IV.

II. METHODOLOGY OF VS IDENTIFICATION
Fig. 1 depicts the structure of the proposed VS identifica-
tion method. As shown, the identification of VS sources are
carried out in three major stages: 1) the VS data that are
captured by the power quality monitors are firstly loaded and
transformed into the unified dimension which is accepted by
the following feature extractor; 2) the CNN-based network,
which is trained in advance using the representation learning
technique, produces an embedding vector for each recorded
VS event; 3) each embedding vector is then analyzed by the
WKNN-based classifier, and finally the identification result
is generated.

A. VS DATA PREPROCESSING
Suppose that the examined raw sample is of size 3 × Traw
where the three channels correspond to the three phases
recording, whereas each channel contains Traw sampling
points. Note that Traw of different VS events recorded by
the power quality monitors differs from each other since the
VS duration varies in a wide range, typically from 0.5 cycle
to 1 minute [1]. Therefore, each channel in the raw sample is
downsampled and truncated into the appropriate dimension
that is compatible with the feature extractor. Suppose that the
feature extractor accepts data of size 3×Text . The downsam-
pling rate Rd is then defined as follows:

Rd = b
Traw
Text
c (1)

where b·c indicates the floor operator which takes the integer
part of the input value. Then for each channel of the down-
sampled data, the first Text points are retained, such that the
downsampled data are truncated into the size 3× Text , which
is compatible to the following feature extractor.

It should be noted that Text is determined by considering
the features of the power quality monitors. In this paper,
the examined data are collected from the system operating at
50 Hz, in the sampling frequency of 10 kHz. In order to avoid
the impact of the signal detection delay, the power quality
monitors that are installed in the examined system retain
one period before the detected VS starting point, as well as
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FIGURE 2. Structure of the proposed feature extractor.

one period after the detected VS ending point. Consequently,
the recorded signal contains at least two cycles which are
equivalent to 400 sampling points in the examined case.
Therefore, Text is set to 400 in the following discussions.
It should be noted that the Text can vary in different scenarios
regarding the recording mode of the employed monitors and
the value of their sampling rate.

To accelerate the model convergence in the training
period, the training data are further separated into several
batches. The number of samples in each batch is denoted
as N .

B. CNN-BASED FEATURE EXTRACTOR
The convolutional neural network (CNN) usually consists of
several convolution layers, pooling layers, and finally fully-
connected layers which are usually connected in series [15].
Fig. 2 presents the CNN structure and the layer parameters
of the proposed feature extractor, using the network visu-
alization program implemented in [16]. The input data of
the feature extractor is transformed into the length of Text
(400 points) by the VS data preprocessing procedure. In the
proposed model, the input signal passes through alternately
three convolutional layers (conv1 to conv3) and three max-
pooling layers (max1 to max3), then two fully-connected
layers (fc1 and fc2).
In the convolutional layers, the input signal that contains

three channels can be regarded as a one-dimensional image
where these three channels are recognized as the RGB color
representations, as described in Fig. 3. Note that the length
of the VS signals is already transformed into 400 points and
the height of the one-dimensional image is enlarged for the
visualization propose.

The input signal is scanned and characterized by the
one-dimensional kernels with learnable parameters. Let Ci
denotes the number of channels and Ti indicates the number
of sampling points in each channel. For the i-th convolution
layer, the input to this layer xi is of sizeN×C in

i ×T
in
i whereas

the output yi is with size N × Cout
i × T

out
i . The output yi of

FIGURE 3. Example of one-dimension image representation of VS signal.

the conv-i is expressed as follows:

yi = σ (
Ci−1−1∑
c=0

ωi,c ? xi,c + bi) (2)

where ? signifies the cross-validation operator whose defini-
tion is given by (3); ωi,c and bi are the learnable parameter
of this layer; σ (·) represents the activation function of the
parametric rectified linear unit (RReLU) which is expressed
as in (4) [17].

ωi,c ? xi,c(t) =
+∞∑

m=−∞

ωi,c(m) · xi,c(m+ t) (3)

σ (x) = max(0, x)+ 0.25 ·min(0, x) (4)
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The intermediate features are extracted in the outputs yi
of the convolutional layer conv-i. The most significant com-
ponents of these features are filtered and retained by the
following max-pooling layer max-i. Note that despite the
possible information loss, the max pooling layers generally
improve the model performance and contribute to the time-
shift invariance of the proposed model [18], [19].

In the proposed model, the max-i splits the input with the
stride of 2 and takes the maximum value of every input slice.
The output pi of max-i is presented as follows:

pi,c(t) = max(yi,c(2t), yi,c(2t + 1)) (5)

The two fully connected layers(fc1, fc2) reduce the length
of the output pi,c and generate the 32 × 1 embedding vector
z that can be regarded as the feature representation of the
input signal [20]. Note that the time translation invariance
of the one-dimensional CNN structure makes the proposed
method immune to the inception time of the VS events. Also,
the parameters such as the dimensions of the proposed neural
network can be changed regarding different sizes of the input
signals, in order that the performance of the proposed feature
extractor can be optimized, and that the signal information
can be fully extracted.

C. WKNN-BASED CLASSIFIER
In the trained model, the embedding outputs that correspond
to the inputs of the same VS types are clustered altogether
in the sense of L-2 norm [21]. Denote the examined testing
input as xtest. The L-2 distance d(xi, xj) between xi and xj is
defined in (6). Let dj represent the L-2 distance between xtest
and the element xj in training set.

d(xi, xj) = [(xi − xj)T · (xi − xj)]
1
2 (6)

Data clustering can be carried out by the classifier such
as the ensemble learning classifier and the k-means algo-
rithms [22]. These algorithms usually require the assembling
of sufficient number of un-clustered samples to perform
the unsupervised training. In the proposed method, the sim-
ple technique that do not require the training period is
needed. Therefore, the distance-weighted k-nearest neighbor
(WKNN) technique can be applied to classify the testing
inputs. For a testing sample, the WKNN algorithm calculates
directly several training samples that are nearest to the testing
one. The prediction is then carried out by analyzing the
VS types of these selected training samples.

Denote x1, . . . , xk and l1, . . . , lk the first k training inputs
and their labels with the minimum L-2 distance to xtest. Note
that x1, . . . , xk are sorted in increasing order regarding their
distances to xtest. The weightMn for the n-th nearest neighbor
xn is expressed as in (7).

Mn =


dk − dn
dk − d1

, if dk 6= d1,

1, otherwise.
(7)

Then the VS type prediction of the testing input xtest can
be generated:

ltest = argmax
l

k∑
n=1

Mn · δ(l = ln) (8)

where the δ(·) equals 1 if l = ln and equals 0 otherwise.

D. MODEL TRAINING USING FEW-SHOT LEARNING
In the proposed model, the embedding outputs of different
VS types are supposed to be sufficiently distinguishable, even
in the cases where only a few labeled data are available
for training. One efficient solution to train the model with
very small-scaled training set is the few-shot learning tech-
nique [23]. Since all trainable parameters of the model are
centered in the CNN-based feature extractor, the few-shot
learning technique is applied in this part. More specifically,
the siamese structure of the feature extractor is designed in
the training period.

Let us define the positive pairs as the pairs of the same
labeled samples and the negative pairs as the dissimilarly
labeled samples. Denote {Z (1)

P ,Z (2)
P } the set of positive pairs

and {Z (1)
N ,Z (2)

N } the set of negative pairs.
As presented in Fig. 4, a certain pair of training samples

are selected and separately fed into two CNN-based feature
extractors. These two feature extractors have an identical
structure and share the same parameter values. Then the
contrastive loss is calculated based on the embedding outputs
of the two feature extractors. The loss function is formulated
such that the positive pairs produce small contrastive loss
compared with the negative pairs, which result in a relatively
large loss. The parameters, such as the weights and the bias
that are shared by both feature extractors, are updated accord-
ing to the contrastive loss. In this paper, the optimization
process for the shared parameters is not illustrated in detail,
since this process can be handled automatically by the deep
learning framework such as PyTorch and TensorFlow.

Fig. 5 presents the strategy of hard-negative pairs selection.
All possible positive pairs are generated by the pair-selection
algorithm, whereas only the same number of pairs with the
smallest distance is selected as the negative pairs, so as to
simulate the most challenging cases for the model to fit.

The positive loss measures the similarity between the
embeddings of the samples in the same VS types [24]:

LP =
Np∑
i=1

d(z(P1)i , z(P2)i )2 (9)

where z(P1)i , z(P2)i represent the i-th pair in the set {Z (1)
P ,Z (2)

P };
Np is the number of pairs in {Z (1)

P ,Z (2)
P }.

Besides, the negative loss estimates the similarity of the
embeddings from the different VS types:

LN = [max(0, δ −
Np∑
i=1

d(z(N1)
i , z(N2)

i ))]2 (10)
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FIGURE 4. Structure of siamese network in training period.

FIGURE 5. Pseudo-code describing the hard-negative pairing algorithm.

where Dm denotes the predefined distance margin between
the positive and the negative sets; z(N1)

i , z(N2)
i represent the

i-th pair in the set {Z (1)
N ,Z (2)

N }.
The proposed model adopts the contrastive loss which

averages the positive loss as well as the negative loss with
the tuning parameter µ [25]:

Lcontrastive = (1− µ)LP + µLN (11)

By optimizing the parameters of the siamese network,
the contrastive lossLcontrastive are attenuated. In the optimized

model, both LP and LN are reduced to the range that is
determined by the marginDm, which indicates that the exam-
ples from the same VS types are clustered together and the
example from the different VS types are mutually separated.
Finally, the aforementioned WKNN-based classifier can be
adopted to identify the VS type of testing data.

III. CASE STUDIES
To validate the proposed identification method, several tests
are carried out with 700 labeled VS samples that are mon-
itored in 2018, in Jiangsu Province, China. Each sample
contains a three-phase voltage signal that is captured at the
sampling rate of 10 kHz (200 samples per cycle). As men-
tioned above, the data preprocessing adjusts the signal size
to be 3 × Text , with Text = 400. The labeling correctness,
as well as the signal integrity of these data, are also manually
verified. According to the cause of the VS, all labeled data are
classified into five categories: 1) VS due to three-phase faults
(3P); 2) VS due to two-phase faults (2P); 3) VS due to single-
phase faults (1P); 4) VS due tomotor starting (MS); 5) VS due
to transformer energizing (TE). Note that both grounded and
ungrounded cases are included in the 3P and 2P events and
that each of the three phases can be the faulty phase for 2P
and 1P events.

The proposed method has been implemented in Python,
using the deep learning framework PyTorch. The hyper-
parameters of the feature extractor, as well as other param-
eters of the model, are listed in Table 1.

In order to simulate the scenarios where different amount
of labeled data are available, the identification performance
in five cases where the examinedmethods are trained with 20,
50, 100, 200, and 500 samples are investigated. In addition,
200 samples are extracted from the rest of the data and utilized
as the test data.

For the set of 200 testing samples, the performances of
the examined methods on the test set are assessed by the
following indexes:

• identification accuracy:

A% =
1

200

200∑
i=1

δ(l(predicted)i = l(true)i )× 100% (12)
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TABLE 1. Hyper-parameters of the feature extractor and model
parameters.

where l(predicted)i and l(true)i are the i-th predicted label and
the real label, respectively;

• identification error:

E% =
1
200

200∑
i=1

δ(l(predicted)i 6= l(true)i )× 100% (13)

• macro-precision:

P% =
1
5

∑
c∈C

TPc
TPc + FPc

× 100% (14)

where C = {3P, 2P, 1P,MS,TE} denotes the set of
categories; TPc, TNc, FPc are the number of samples
in category c that are true positive, true negative, false
positive, respectively.

• macro-F score:

F% =
2 · P · A
P+ A

× 100% (15)

The accuracy, the macro-precision, and the macro-F score
are the typical indexes for the performance evaluation of
the examined model. The values of these three indexes are
positively correlated to the identification ability.

A. IMPACT OF THE NUMBER OF VS DATA
The amount of training data can affect the training conver-
gence and the testing accuracy of the proposed model. The
insufficient number of training samples may result in the
diverging model and loss oscillations [26]. Therefore, five
testing cases, involving 20, 50, 100, 200, and 500 training
samples, are investigated to show the impact of the number
of training samples.

Fig. 6 depicts the loss convergence on the testing set with
the five cases of the number of training data. As shown,
the testing losses with different number of training samples
begin to converge after 10 − 15 training epochs. After 25
epochs, the testing losses for all five cases attain stable values
without any oscillations. These observations imply that the
proposed method has reliable learning ability. On the other
hand, the converged value of losses attenuates when more
training samples are provided. The smaller loss indicates

FIGURE 6. Convergence of testing loss from the proposed model with
different number of training samples.

TABLE 2. Performance of the proposed method on the testing set with
different number of training samples.

that the samples from different VS categories are more dis-
tinguishable in metric of the L-2 distance. Consequently,
the increasing number of training samples leads to the rising
accuracy of identification. This statement can be verified
in Table 2, which shows the accuracies of the proposed
method on different VS types with different training data
scales.

As presented in Table 2, the proposed method can identify
72.5% of the testing samples when only 20 training sam-
ples are available. When the given number of training data
increases to 500, the identification accuracy rises consistently
at 94.5%, which implies that the proposed method has satis-
factory performance in both few-sample and enough-sample
cases.

B. IMPACT OF THE VS TYPE
The identification accuracy of the proposed method can vary
on the different VS categories. Fig. 7 presents the confusion
matrix on the test set, based on the proposed model trained
with 500 samples. In Fig. 7, each column presents the distri-
bution of the predicted class, whereas each row describes the
distribution of the actual class. According to the confusion
matrix given in Fig. 7, 5% of the three-phase faults (3P)
samples and 10% of the two-phase faults (2P) samples are
misidentified as the single-phase faults, whereas 12.5% of
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FIGURE 7. Confusion matrix of the proposed model trained with
500 samples.

FIGURE 8. Visualization of training and testing samples using t-SNE.

the single-phase faults (1P) samples are mistaken as the other
two faults. On the other hand, the proposed method shows
good performance on the non-fault cases, including the motor
starting (MS) and the transformer energizing (TE).

Besides, the 500 training samples, as well as the 200 testing
samples, are visualized in two-dimensional spaces by using
the t-distributed stochastic neighbor embedding (t-SNE). The
t-SNE technique performs nonlinear dimensionality reduc-
tion which maps the high-dimensional vectors (the 32 × 1
embeddings) into two components, such that the distribution

of these high-dimensional embeddings can be presented and
visualized in the 2-D maps [27]. Fig. 8 presents the t-SNE
mapping results of the training data and the testing data. As
shown, the points corresponding to the motor starting (MS)
and the transformer energizing (TE) are tightly clustered and
located distantly to the majority of the points corresponding
to the three fault cases (3P, 2P, and 1P), which coincides well
with the fact that accuracy onMS and TE are relatively higher
than the accuracy on the other three cases. On the other hand,
the partial overlapping of several training samples and testing
samples can be observed. In Fig. 8b, around 10 yellow points
(2P) and 10 blue points (1P) are overlapped, as surrounded
by the dash-line box. As shown in Table 2, the partial over-
lapping between these two types of VS samples yields the
relatively lower testing accuracies on these two types (90.0%
and 87.5% for 2P and 1P cases, respectively).
Besides, even though the identification accuracy varies

among the cases of different VS types, the accuracy on each
VS category goes beyond 87.5%, which is still in the accept-
able range.

C. COMPARISON AND DISCUSSION
To show the superiority of the proposedmethod over the other
VS identification methods, the proposed method has been
compared with the baseline method and the method presented
in [12] (Sha’smethod). The baselinemodel has a similar CNN
structure whose embedding layer is connected directly to a
fully-connected layer to generate the outputs. The softmax
activation function, as well as the cross-entropy loss function,
are selected in the baseline model such that the baseline
model can be regarded as the simple six-layer (conv1-3, fc1-2,
and the additional fc3) CNN. Note that neither the siamese
network nor the few-shot learning technique is adopted in
the baseline model. In Sha’s method, the K-means-singular
value decomposition (K-SVD) technique is utilized to extract
the features of the input signal; then the least squares support
vector machine (LS-SVM) classifier is adopted to identify the
VS type.

Table 3 presents the performance on the 200 testing sam-
ples of the three aforementioned methods are examined in
five cases where the number of training samples varies among
20, 50, 100, 200, and 500. As shown, both the baseline model
and Sha’s method suffer degradation on the performance of
VS identification when only 20 training samples are avail-
able. In the case of 20 training samples, however, the pro-
posed method maintains at least 72.3% precision, 72.5%
accuracy, and 72.4% F-score, compared with the baseline
model and Sha’s method which require 200 training samples
to attain the similar values of these three indexes. On the other
hand, when the number of training data is sufficient (such
as 500 training samples), both the baseline model and Sha’s
method generate satisfactory precision, accuracy, and F-score
which are over 80%. In this case of 500 training samples, all
of the three indexes for the proposedmethod are beyond 94%.
Compared to Sha’s method, the proposed method enhances at
least 8.2% in the precision, 8.5% in the accuracy, and 8.3%
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TABLE 3. Identification Precision, Accuracy, and F-score on the testing set of the Baseline Method, the Method introduced in [12], and the Proposed
Method on the testing set.

in the F-score. Consequently, the proposed method shows
advantages over the other methods in different testing cases.

Other training-based methods such as [5], [11], [13] also
require a large scale of training data to optimize the built-in
parameters. Although these methods show good performance
with a sufficient number of input data, their performance in
the few-data case may still be degraded.

In general, these comparisons evinces that the proposed
method shows good performance with sufficient number of
training data and outperforms other methods in the case
where only a few training samples are available.

IV. CONCLUSION
An efficient method for the identification of VS events is
introduced in this paper. The proposed method constructs the
siamese network and learns from a few available training
data. After the training period, the features of the prepro-
cessed data are extracted by the CNN-based feature extrac-
tor. Then the identification results are generated from the
WKNN-based classifier. The proposed method, as well as the
other two identification methods, are implemented and tested
with 20 - 500 training samples. The testing results suggest
that the proposed method is promising in identifying the
VS categories when the number of available training samples
is insufficient.

It should be noted that in the training period of the proposed
method, the problem of overfitting may occur, especially in
the cases where the number of training samples is insufficient.
Future work will try to resolve this problem by adding drop-
out layers. Besides, other disturbance sources such as the
capacitor switching may also cause the VS events. Future
research will include these sources to make the proposed
method more complete.
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